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Abstract

The benchmarking effort within the Computational Research & Development Programs at the Oak Ridge
National Laboratory (ORNL) seeks to design and enable High Performance Computing (HPC) benchmarks
and test suites. The work described in this report is a part of the effort focusing on the comparison and
analysis of OpenSHMEM implementations using the Interleave Or Random (IOR) software for
benchmarking parallel file system using POSIX, MPIIO, or HDF5 interfaces. We describe the effort to
emulate the MPIIO parallel collective capabilities in the IOR benchmark using OpenSHMEM
communication. One development effort was in emulating the MPI derived datatype used in the read/write
operations and in setting the file view. Another effort was in implementing an internal cache in
OpenSHMEM distributed shared memory to facilitate global collective I/O operations. Experiments
comparing collective I/O in MPIIO implementations with the OpenSHMEM implementations were
performed on the SGI Turing Cluster and the Cray XK7 Titan supercomputer at the Oak Ridge Leadership
Computing Facility (OLCF). The preliminary results suggest that on the Cray XK7 Titan, the MPIIO
implementations obtained higher write performance and the OpenSHMEM version obtained slightly higher
read performance. On the SGI Turing Cluster, the MPIIO implementations obtained slightly higher
performance over the OpenSHMEM implementations on large files.
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INTRODUCTION

This OpenSHMEM implementation of the Interleave Or Random (IOR) benchmark modifies version
2.10.3 that is available from https://github.com/LLNL/ior. The user guide of the IOR benchmark is
also available at the code repository.

The IOR software can be used for benchmarking the performance of parallel I/O file systems using
various interfaces and access patterns. IOR uses MPI for processor synchronization and can be configured
to use POSIX, MPIIO, or HDF5 interfaces [4, 5].

The MPIIO interface supports parallel collective I/O where all processors cooperate to perform
concurrent I/O into a global shared file. Each processor may use MPI_File_set_view() to specify a
processor-centric view of data in the file using the MPI data type.

In this work, the source code for MPIIO was modified in a straight-forward manner to use
OpenSHMEM communication primitives. One development effort was in emulating the MPI derived
datatype used in the read/write operations and in setting the file view. Another effort was in implementing
an internal cache in OpenSHMEM distributed shared memory to facilitate global collective I/O operations.

Section 2 contains a short background on MPI data types and MPIIO. Section 3 describes the
implementation details in emulating the MPIIO using OpenSHMEM. The options used in experiments with
IOR are described in Section 4. Section 5 is a summary of results on the Cray XK7 Titan supercomputer in
the Oak Ridge Leadership Computing Facility (OLCF) at the Oak Ridge National Laboratory. Section 6
summarizes the results on the Durmstrang SGI Turing cluster and finally, the summary analysis is in
Section 7.

BACKGROUND ON MPI DATA TYPE AND MPIIO

This section begins with a brief review of MPI derived datatypes and the role of MPI derived datatype
in MPIIO. Further details can be found in [1, 2]. MPI derived datatype is a way to describe the layout of
data in memory. This can be used to send and receive non-contiguous data (such as a sub-block of a
matrix) or message with different datatypes (such as part of a C structure that contains integers and floating
point numbers) without first packing or unpacking into a buffer. A high quality implementation of MPI
may avoid extra data movement in packing/unpacking the individual items but directly transfer the
necessary data in-place. The derived type can be composed out of pre-defined basic types (such as
MPI_INTEGER or MPI_LONG_LONG) using composition operations such as MPI_Type_contiguous(),
MPI_Type_vector() or MPI_Type_create_subarray(). There can be further nesting of derived types
such as say subarray of vector of structures. The MPI_Type_contiguous() and
MPI_create_subarray() type operations are used in the MPIIO option in IOR Benchmark. Figure 1
shows the code fragment for using MPI_Type_create_subarray() to describe a sub-matrix out of a
larger matrix of integers (see Figure 2). The routine is sufficiently general to handle an n-dimensional array.
The variables array_of_sizes, array_of_subsizes, and array_of_starts contain the global size of
the matrix, local sizes of the sub-matrix, and starting offsets in the larger matrix. The assignment order =
MPI_ORDER_C describes the data is laid out using C ordering where the last index varies fastest. Note that
MPI_ORDER_FORTRAN assumes the first index varies fastest.

When a file is opened using MPI_File_Open(), the default file view is to access every byte in the file.
This view can be changed by providing MPI derived data types for the basic elemental “etype” and
“filetype” to MPI_File_set_view() to access non-contiguous data. The processor can then access only
the data elements exposed in the “filetype” and transfer data only in units of “etype”. Figure 3 shows how
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Fig. 1. Code to use MPI_Type_create_subarray.

Fig. 2. Simple illustration of a sub-matrix out of a larger matrix.

different views can be imposed on the same file to access only a subset of the data.
MPIIO implements collective I/O where a group of processors collectively and in cooperation access

the same shared file to perform I/O in large contiguous requests and then use the communication network
to rearrange the data. Figure 4 shows that processor P0 and P1 each have a different file view. Here P0 uses
one file view to access the “red" data items, and P1 uses a different file view to access the “yellow" data
items. From the perspective of processor P0, P0 may issue a read operation for “contiguous" sequence of
data, however, at a lower level, each data item may require performing a seek operation to position the
internal file pointer and then require performing a small I/O operation to access the data item. If each
processor performs independent I/O operations, then this may require many small I/O operations and may
lead to poor I/O performance. A more efficient alternative is to perform a collective operation where each
processor performs I/O operations in large contiguous blocks. Then P0 may be reading data that is required
by P1 (and vice versa). The processors can use the communication network to rearrange the file data to
assign the data to the correct processor. This collective way of performing I/O may lead to significant
improvement in I/O performance [6]. Note that extra data in “holes” (the blank slots in Figure 4) may still
be accessed to preserve the original data in the file. This may lead to extra overhead in transferring more
data than strictly required. Collective I/O with and without explicit file view is available in the MPIIO
option of IOR Benchmark.
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Fig. 3. Simple illustration of using MPI derived type to impose different file views on the same file.

Fig. 4. Simple illustration of collective I/O on two processors.
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IMPLEMENTATION DETAILS

The OpenSHMEM version of IOR emulates the collective I/O capabilities in MPIIO in performing
concurrent I/O operations to a common shared file. In this implementation, each processor performs I/O
operations in large contiguous blocks to read data from the shared file into an internal cache in distributed
shared memory, then each processor uses shmem_getmem() or shmem_putmem() to access the required
data. The modified data is then written out to the shared file in large contiguous blocks. In this
implementation, the distributed memory cache is in “static" storage memory and its size is determined at
compile time. Note that there can be contiguous access in memory to (and from) non-contiguous accesses
in the shared file.

The OpenSHMEM implementation emulates MPI derived datatype using routines with similar
interfaces such as SHMEM_Type_contiguous(), SHMEM_Type_vector(), SHMEM_Type_commit() and
SHMEM_Type_create_subarray(). To enable a straight-forward conversion of the MPIIO version of
IOR, the OpenSHMEM implementation further emulates MPIIO with a similar function interface for other
parts of the MPI library including MPI_Info by SHMEM_Info, MPI_Status by SHMEM_Status. The MPI
Communicators are also emulated using SHMEM_COMM_WORLD for MPI_COMM_WORLD, SHMEM_COMM_SELF
for MPI_COMM_SELF. Since the team extensions available in Cray SHMEM are not widely available, the
MPI sub-groups are emulated using the description of (pe_start,logpe_stride,pe_size) that is used
in OpenSHMEM global reduction operations. Other MPIIO functions such as MPI_File_read_at_all()
and MPI_File_write_at_all() are emulated in SHMEM_File_read_at_all() and
SHMEM_File_write_at_all() with a similar interface.

Internally, this implementation stores the byte sizes and byte offsets of each derived type in a list.
During a collective operation such as SHMEM_read_at_all() with a non-trivial file view, the processors
determine the total global size and extent of the collective I/O operation using global reduction operations.
The processors then read large contiguous data blocks from the shared file into the disk cache in distributed
shared memory. If the distributed disk cache is smaller than the global extent of I/O request, the global
collective operation will be decomposed into multiple smaller steps where each step transfers data that will
fit entirely in the disk cache. Each processor will traverse its encoding of the derived type in the
SHMEM_File_read_at_all() request and in the file view to perform shmem_getmem() in a read
operation (or shmem_putmem() in a write operation). The contiguous data blocks will be written from the
cache back into the shared file in a SHMEM_write_at_all() operation. The implementation also performs
atomic operations to correctly update the maximum file size.

Since IOR was originally designed to use MPI for distributed communication, converting all
communication to OpenSHMEM would be a significant undertaking. In this implementation, only the
collective I/O capability of MPIIO is emulated using OpenSHMEM. Thus interoperability of
OpenSHMEM and MPI is required. While this issue of interoperability with MPI is not explicitly
addressed in the OpenSHMEM standard, several commonly available OpenSHMEM implementations
(such as SGI MPT, Cray SHMEM, OpenMPI) do support interoperability or co-existence with MPI.
However, minor tailoring may be needed for different OpenSHMEM implementations. For example one
implementation of MPI may require calling shmem_init() and shmem_finalize() whereas calling
shmem_init() or shmem_finalize() may cause a failure in another implementation of MPI. It might be
helpful to software developers if this issue of interoperability with MPI can be addressed in the standard, or
informally among developers of OpenSHMEM.
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EXPERIMENTS WITH IOR

The experiments with IOR are focused on comparing the collective I/O capabilities (with and without
file view) to a shared file in MPIIO and emulation of such capabilities using OpenSHMEM. IOR is highly
configurable with many different options and our experiments used only a subset of the available options.
The following options "-c -w -r -b 1m -t 1m" are used in the experiments to enable collective I/O ("-c") in
write and read operations ("-w -r"). The transfers are performed in 1 MByte requests ("-b 1m -t 1m"). The
IOR "-s" stripe count is used to adjust the file size to be twice the total available memory of the compute
nodes. Generating a large file that is twice the total available memory of the compute nodes is one way to
defeat aggressive caching of file data into memory by the operating system or Lustre I/O system. If the
shared file is not sufficiently large, it may reside entirely in disk buffers and cached in memory and thus the
IOR benchmark cannot truly measure the parallel disk I/O performance. The IOR options "-Q 16 -Z -X 16"
are used to randomize the read access to avoid having the same processor re-read the same disk data that it
produced. This is another way to defeat aggressive disk caching. The "-a MPIIO -c " options are used to
enable collective I/O in MPIIO and similarly "-a SHMEMIO -c " options are used for collective I/O in
OpenSHMEM implementation. The "-V " option is used to enable the MPI_File_set_view and similar
SHMEM_File_set_view capabilities.

CRAY XK7 TITAN

The Cray XK7 Titan machine in the Oak Ridge Leadership Computing Facility (OLCF) at ORNL
consists of 18,688 compute nodes. Each compute node has 32 GBytes of memory, one 16-core AMD
Opteron 6200 Interlagos processor and a NVidia Kepler Graphics Processing Unit (GPU) with 6 GBytes of
device memory (see Figure 5). Each Interlagos processor has eight 256-bit floating point compute units
shared by 16 integer cores. Two compute nodes are connected to a Cray Gemini network device (NIC) that
has over 160 GBytes/sec of routing capacity (see Figure 6). The global network is arranged as a
three-dimensional (3D) torus. The Random Ring benchmark in the HPC Challenge Benchmark Suite [3]
achieves transfer rates of about 0.055 GBytes/sec per rank and the STREAMS benchmark for testing
memory subsystem achieves about 72 GBytes/sec. Figure 5 shows the compute architecture of the Cray
XK7 and the configuration of the Gemini network is depicted in Figure 6.

For this IOR benchmark, only the CPU cores were used and the GPUs were untouched. The batch
policy on Titan cannot guarantee allocation of contiguous nodes and this can lead to some variations in the
communication performance. For example, two MPI tasks may be adjacent nodes on the 3D network in
one batch run, but may require many hops across the network in another batch submission.

The native Cray SHMEM implementation (module cray-shmem version 7.2.5) was used to build the
benchmark.

The Lustre parallel file system on Titan is a system-wide shared resource so I/O performance can be
affected by other concurrently running applications. Conversely, running the IOR benchmark may also
adversely affect the performance of other concurrently running applications. Since each compute node has
32 GBytes of main memory and 16 cores (2 GBytes per core), we design our experiment to write out
4 GBytes per core. Moreover, we increase the stripe count for large files, using 8 stripes for 1024 Gbytes,
16 stripes for 2048 GBytes, 32 stripes for 4096 GBytes. For example, running 512 tasks on 32 nodes (16
tasks per node) would require a file that is 32 * (2 * 32 GBytes) = 2048 GBytes.

Tables 1, 2, and 3 compare performance of MPIIO (with and without file view) with SHMEMIO. The
results suggest the MPIIO implementation have a higher write performance over SHMEMIO but
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Fig. 5. Compute node architecture of Cray XK7. Picture provided by Cray and available at https:
//www.olcf.ornl.gov/training-event/titan-workshop/.

Table 1. IOR performance on 256 tasks on 16 nodes on 1024 GBytes file and stripe count 8.

SHMEMIO may have a slightly higher read performance.

Table 2. IOR performance on 512 tasks on 32 nodes on 2048 GBytes file and stripe count 16.
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Fig. 6. Each Cray XK7 compute node is interfaced to the Gemini interconnect through Hyper-
Transport 3.0 technology. Picture provided by Cray and available at http://www.cray.com/
Products/Computing/XK7.aspx.

Table 3. IOR performance on 1024 tasks on 64 nodes on 4096 GBytes file and stripe count 32.
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SGI TURING CLUSTER

The SGI Turing Cluster consists of 16 compute nodes, each node has two Intel Xeon E5-2660
processors, each Xeon has 10 cores running at 2.6 GHz (105 Watts) for a total of 20 physical cores (or 40
virtual cores with Intel Hyper-Threading enabled). Each node has eight 16 GBytes DDR4 memory cards
for a total of 128 GBytes of memory. Each node also has a fast 1 TByte 10K revolutions per minute (RPM)
SATA hard disk with 6 Gbits/sec peak transfer rate, one Intel Xeon Phi 7120P PCIE accelerator and is
connected with a Mellanox ConnectX-4 VPI adapter card, EDR IB (100 Gbits/sec) and 100 Gbits/s
ethernet, single-port QSFP, PCIe3.0 x16 network connector. The nodes are connected with a Mellanox
InfiniBand Edge Switch with 36 QSFP ports with a non-blocking switching capacity of 7.2 Tbits/sec. The
Turing Cluster has access to a Lustre file system (/lustre/esscfs) with 8 OST. For this benchmark only
8 lustre clients were used with only 1 MPI task per node and the directory was configured with stripe count
of 8. The native SGI MPT implementation of SHMEM (module mpt version 2.13) was used to build the
benchmark.

Table 4 shows the performance for a small file (4 GBytes per task) that can be easily cached in
memory. The results show very high I/O performance. MPIIO has much higher write performance
compared to SHMEMIO and slightly better read performance over the implementation using SHMEMIO
as well. Table 5 shows the performance for a larger file that is twice the available memory (256 GBytes per
task). The read and write performance using OpenSHMEM implementation is comparable or slightly
slower compared to MPIIO.

Table 4. IOR performance on 8 tasks on small 32GB file.
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Table 5. IOR performance on 8 tasks on 2048 GB file.

SUMMARY

A new interface using OpenSHMEM to emulate the parallel collective I/O in MPIIO has been
developed as a new feature for IOR parallel I/O benchmark. Since the IOR benchmark uses the advanced
capabilities of MPI_File_set_view() capability of MPIIO, and nested MPI derived datatypes
constructed with MPI_Type_create_subarray() and MPI_Type_contiguous(), the OpenSHMEM
implementation also emulates the capabilities and interfaces for MPI datatype in the implementation of
SHMEM_File_set_view() with similar nested derived datatypes using
SHMEM_TYPE_create_subarray() and SHMEM_Type_contiguous(). An internal cache in
OpenSHMEM distributed global memory allows each process to perform I/O operations in large
contiguous blocks and then redistributes the data using OpenSHMEM shmem_putmem() and
shmem_getmem() operations.

The parallel collective IOR benchmark using MPIIO interface and OpenSHMEM interface were
compared on the Cray XK7 Titan at OLCF and on the SGI Turing cluster. The results suggest the MPIIO
obtains slightly higher write and read performance compared to the OpenSHMEM implementation.
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